Microplastics in NELHA Waters

Romilly Benedict George Mason University

Mentor: Pamela Madden

Organization: NELHA

PLASTICS IN THE MARINE ENVIRONMENT: WHERE DO THEY COME FROM? WHERE DO THEY GO?

eunomia 👪

Microplastics

- Plastic particles between 0.3 mm – 5mm
- Microplastic particles are ubiquitous in ocean waters

Harmful Effects to Organisms

- Microplastics can be ingested by organisms.
- Ingestion of microplastic can cause a variety of negative effects:
 - Intestinal damage
 - Liver damage
 - Impaired reproduction
 - Reduced immune function
 - Oxidative stress
 - Other negative health effects that result in increased mortality

Chemicals within Plastic

- Plastics have chemical additives.
- Microplastics absorb hydrophobic and toxic chemicals from the water and concentrate them.
- Chemicals leach to organisms when particles are ingested

NELHA

- NELHA is a supplier of deep and surface ocean water.
- Some of their clients bottle desalinated drinking water from the deepsea
- Sampling the deepsea and surface pipelines.
- Also sampling coastal surface waters.
- Goal: determine microplastic concentrations in the pipelines and surface waters.

Locations for Sampling

- Sea surface
- 80 feet
- 2000 feet
- 3000 feet

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

NELHA Facility

Sample Collection - Pipelines

- Designed and constructed a water filtration system
- Installed flowmeters to calculated water volume
- Ran water through 0.333 mm nets

Sample Collection - O cean

- Used manta trawl net with flowmeter
 - Floats on sea surface
- Went along six transects branching out from the main facility

Lab Procedure

- Lab procedure from NOAA (National Oceanic and Atmospheric Administration).
- Recently released as an intended standard for microplastic concentration analysis to create comparable data.

Sieving and Drying

- Samples were sieved using 5mm and 0.333 mm sieves
- Dried at 90° C in a drying oven
- Mass of total solids taken

Wet Peroxide Oxidation (WPO)

- Natural organic matter oxidized
- Used 30% hydrogen peroxide
- FeSO4 as a catalyst
- Heated to 75° C

WPO - Red Precipitate

- Two samples produced red precipitates
- Natural organic matter remained
- Process was repeated

Wet Peroxide Oxidation - Foaming

- Larger amount of organics
- Thick foam lifts solids out of mixture
- Return beaker to stir/hot plate

Density Separation

NaCl solution, density 1.2 g/mL
Most plastics density less than 1.2 g/mL

Density range of most common polymers of environmental relevance: Density (g/cm3)

Distilled water	1
Sea water	1.025
Polyethylene (PE)	0.93-0.98
Polypropylene (PP)	0.89-0.91
Polystyrene (PS)	1.04-1.11
Polyvinylchloride (PVC)	1.20-1.45
Polyamide (PA)	1.13-1.5
Polyethylene terephthalate (PET)	1.38-1.39
Polyvinyl Alcohol (PVA)	1.19-1.35

Final Steps

- Sieved
- Air dried
- Microscope Examination
- Gravimetric Analysis

HAKKY

Microplastics in the Pipelines

Sample Data				
Location and Sample #	Mass Total Solids (mg)	Mass Microplastic (mg)	Water Volume (m ³)	Concentration (mg/m ³)
200o ft Deep Point (1)	277.3	2.5	541.844	0.0046
2000 ft Deep Point (2)	307.7	0.2	702.648	0.0003
80 ft Deep Point (1)	974.2	1.1	599.761	0.0018
80 ft Deep Point (2)	386.3	0.5	719.039	0.0007
3000 ft Deep (1)	93.9	2.2	722.862	0.0030
3000 ft Deep (2)	254.5	1.1	351.324	0.0031
80 ft Deep (1)	424.4	1.4	920.877	0.0015
80 ft Deep (2)		1.3	279.098	0.0047
Surface Trawl (1)	30511.9	1206.9	3,010	0.4010
Surface Trawl (2)	11202.5	2056.2	2,660	0.773

A World Comparison (Water Column)

1	NELHA	Water Column (SINTEF Project No. 302003604)		
Pipeline	Concentration (mg m ⁻³)	Concentration (mg m ⁻³)	Concentration (particles m ⁻³⁾	Location
2000 ft Point	0.0046		0.017	North Pacific central gyre, sampling at 100 m
2000 ft Point	0.0003	0.010.02	0.2 to 0.4	Santa Monica Bay, California (offshore); range represents before and after storm conditions
80 ft Point	0.0018	0.010.13	1 to 11	Santa Monica Bay, California (nearshore); before and after storm conditions
80 ft Point	0.0007	0.120.25	1.56	Santa Monica Bay, California (offshore); before and after storm conditions (Epibenthic)
3000 ft	0.0030		8 to 9180	Northeastern Pacific/coastal British Columbia.
3000 ft	0.0031		1.69	North Atlantic subtropical gyre to a depth of 5 m
80 ft	0.0015		2.46	North Atlantic, Celtic Sea to a depth of 3 m
80 ft	0.0047			

 \mathbf{V}

A World Comparison (Surface)

NELHA		Surface (SINTEF Project No. 302003604)		Surface (SINTEF Project No. 302003604)	
Surface Trawls	Concentration (mg/m ³)	Concentration (mg m ⁻³)	Concentration (particles m ⁻³)	Location	
One	0.4010	0.02-0.04	0.2-1.0	Santa Monica Bay, California (offshore); before/after storm conditions	
Two	0.773	0.002-2.4	0.518.5	Santa Monica Bay, California (nearshore); before/after storm conditions	

Conclusion

- Designed and constructed a filtration system to test the pipeline water
- Tested and refined the NOAA lab procedure for NELHA
 Successfully determined microplastic concentrations for the pipelines and the surface waters
 - The pipelines have a very low concentration
 - The surface waters have a much higher concentration

Future Steps and Recommendations

- Determine a mass solids/ hydrogen peroxide solution ratio
- Use a different catalyst such as activated carbon
- Use a different density separation solution to capture / heavier microplastics
- Use several solutions of different density to characterize plastic types
- Do a longer term study to determine concentration trends over time

Acknowledgements

- Pamela Madden, NELHA
- Jan War, NELHA
- Dean Towle, NELHA
- Keith Olson, NELHA
- Alex Leonard, NELHA
- James Morioka, NOAA Marine Debris Program
- Natural Energy Laboratory of Hawaii Authority
- Akamai Internship Program
 - Institute for Science and Engineer Educators at UCSC
 - University of Hawaii Institute of Astronomy
 - Funding:
 - Thirty Meter Telescope International Observatory
 - Air Force O ffice of Scientific Research (FA 9550-15-1-0427)
 - Hawaii Community Foundation
 - Monty Richards Awards/ The Bank of Hawaii Foundation
 - Daniel K. Inouye Solar Telescope
 - Housing for interns on Hawaii Island was provided by University of Hawai'i at Hilo, Canada-France-Hawaii Telescope, and W. M. Keck Observatory

