Grid Scale Electrolyzers: Enabling the 2045 Hawaii Vision

Stephen Szymanski, Director of Business Development, Nel Hydrogen +1.203.678.2338 • sszymanski@nelhydrogen.com

December 6, 2018

Company Overview

Public Company, Pure H₂ Play

- 3 Manufacturing Sites
- 3,500+ Electrolyzers Installed
- 40+ H₂ Fueling Stations
- 90+ Years Experience

USA (Wallingford, CT)
PEM Electrolyzers

Denmark (Herning) H₂ Fueling Stations

Norway (Notodden) Alkaline Electrolyzers

What we do....

Our technologies produce pure hydrogen from electricity and water. When the electricity is from renewable energy, you have a carbon free source of hydrogen fuel.

Liquid alkaline electrolyzer

PEM electrolyzer

Today's Electric Grid

nel•

The US/Canadian electric grid is the World's Largest

Machine*

- Nodes
- Connections
- Inputs
- Outputs

 $^{^*\} www.livescience.com/48893\text{-}improving-efficiency-on-the-electric-grid.html}$

Increasing Grid Complexity

- The form and complexity of all electric grids increase every year
 - Longer lines
 - More nodes suppliers and users
 - More complicated and demanding energy uses
 - Increased variety of energy sources
 - Two-way electricity movement

Early Electric Grids – One Way Power Movement

Electric power flowed "downhill"

Non-Utility Generation – Upset the Orderly "Demand-pull" Approach to Capacity

- Created additional competition for conventional power plants
- Generation incentives helped obsolete the orderly demand-pull approach to capacity growth
 - 1978 US PURPA (Public Utilities Regulatory Policy Act)
 - Incentivized some generation approaches for societal benefit
 - Promoted energy conservation (reduce demand)
 - Promoted use of domestic and renewable energy (increase supply)
 - First widespread experience in the US with the concept of a "non-utility generator".

Renewables: impact on the grid

 Several areas in Europe already experiencing critical levels leading to transmission issues and curtailment

Wind and photovoltaic power generation in Germany

Excess Power versus Excess Oil

Electricity Consumption: 23,000,000* GWh

Energy Storage: 156 GWh* (0.0008%)

Oil Production: 27.76B Barrels/Year*

Oil Reserve: 4.1B Barrels* (14.8%)

Oil reserves: 54 days Electricity: 4 minutes 19,000x differential

*2013 numbers, <u>www.eia.gov</u>, <u>www.energystorageexchange.org</u> (DOE), <u>www.iea.org</u>, <u>www.worldenergy.org</u>

Where is Storage Today?

"Excess" Power – Key to Mainstream Electrolysis

- The Hydrogen Electrolyzer
 - Proven technology
 - Reliable
 - Easy-to-operate
 - Load-following
 - Easy to maintain
 - Relatively low capital cost
 - Very dependent on "fuel" cost (electricity)
 - Ideal user of "excess" power

M400, 2.2 MW electrolyzer

Electricity Cost and Electrolysis

nel.

 Effect of electricity pricing variability on the cost of hydrogen generated via electrolysis:

Grid price (cents/kWh)	Hydrogen variable price (\$/100 scf)		
10	\$1.50	-	Large-scale delivered hydrogen price
8	\$1.20		
6	\$0.90		
4	\$0.60		
2	\$0.30		Current cost of SMR hydrogen

NREL – Economic Assessment of Hydrogen Technologies Participating in CA Electricity Markets*

- Electrolyzers can:
 - Smooth renewable generation
 - Provide grid services
 - Operating reserves
 - Frequency regulation
 - Load following
 - Benefit from electricity price swings

A3880, 18 MW electrolyzer

^{*} NREL Contract #DE-AC3608GO28308

Market Opportunity: Stranded Wind & Solar

(1) Addressable market size based on management's internal estimates for Germany

Combining solar and wind increases electrolyzer utilization

- Combining solar and wind can increase electrolyzer capacity factor particularly for off-grid applications.
- Depending of site location wind production typically happens during night and solar during day.
- Optimization of solar/wind and electrolyzer capacity may enable up to 65% electrolyzer utilization off-grid.
- Local power management will be required when operating off-grid to ensure sufficiently stable power supply.

Fast ramping capability is well suited for renewable energy profiles

Grid services capability

- Standard test methods available for ancillary services market
 - Electrolysis meets regulation market tests

Traditional Regulation Signal Test

Dynamic Regulation Signal Test

Courtesy of K. Harrison, NREL

PEM electrolzyers for grid services:

NREL Wind-to-Hydrogen Project shows ability to provide both up and down regulation services in a simulated AC grid

- PEM electrolyser triggered to provide frequency regulation (59.5 or 60.5Hz)
- Electrolyzer adds or sheds 10kW load to stabilize AC grid in milli-seconds
- Confirmed the ability of PEM electrolysis to increase grid stability

There is a precedent for large scale hydrogen production from renewable electrolysis....

Rjukan, Norway; 1927 – 1970's

Glomfjord, Norway; 1953 - 1991

- Two largest electrolyser plants worldwide
- Capacity: 30 000 Nm³/h each
- Energy consumption: approximately 135 MW each
- Supplied by renewable hydro power

Dispatch to meet load and accept renewables

Source: HNEI, Hawaii RPS Study, May 2015

Hydrogen storage dominates long duration use cases that will enable the high penetration of renewables:

Source: Soloveichik, NH3 Fuel Conference 2016

^{*} LOHC (liquid organic hydrogen carrier) and ammonia are both produced with hydrogen as an input

Hydrogen energy storage (P2G2P) cost comparison to Li-Ion batteries

Case 1: Dedicated fuel cell for converting stored energy back to electricity.

Case 2: Hydrogen is transported via CNG distribution system and used in existing generation asset.

CHBC White Paper, Power-to-Gas: The Case for Hydrogen

Key Takeaway:

Even with a dedicated fuel cell for converting the stored energy back to electricity, P2G is cost effective at longer discharge times.

HDV's and buses can help provide scale to hydrogen

HDV's consume much more hydrogen than LDV's and fleet operation enables high fueling equipment utilization.

500/year

1,000/year

High fueling equipment utilization (fleet)

40,000/year

Low fueling equipment utilization (network)

New alkaline system configurations can already address grid scale applications

NEL is developing a GIGA factory concept for REH2 production to achieve fossil cost parity

- New cluster concept where electrolyser stacks share balance of plant components
- 8 stack cluster (2.25 MW per stack) provides the basis for grid scale plants
- Target is to reach <\$500/kW and manufacturing scale to supply hundreds of MW
- Work in process with clients on large-scale plant concepts

8 cluster electrolyser
Sharing balance of plant
~ 18 MW

Multiple clusters for large scale plants 100's of MW to GW size

Similar cost reduction can be achieved for 20 MW PEM array: "M4000" platform

20 MW CAPEX is approximately half of 2 MW system on a \$/kW basis.

Nel's M4000 PEM system layout in development.

Case Study: How volume can drive cost reduction

Nikola Motors supply agreement will enable automation, scale-up, and cost reduction

OVER 8,000 TRUCKS
ON ORDER
800 TRUCK ORDERS
FROM ANHEUSERBUSCH INBEV
TRUCKS ARE LEASED
ACCORDING TO
MILEAGE WITH ALL
FUEL INCLUDED

Source: Nikola

Nel's 8 ton/day (18 MW) electrolyzer plant provides the hydrogen production for each station site. New factory in Norway will enable 40% reduction in stack cost.

Mahalo!

www.nelhydrogen.com

