U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

H2@Scale: Progress, Opportunities and Needs

Dr. Shuk Chan - Fuel Cell Technologies Office

NELHA ESS 2018 Conference

Kailua-Kona, Hawaii – December 6, 2018

EERE Fuel Cell Technologies Office (FCTO)

Early R&D Focus	Applied research, development and innovation in emerging hydrogen and fuel cell technologies leading to:			Energy securityEnergy resiliencyStrong domestic economy	
Early R&D Areas			Impact		
			60% Lower Fuel Cell Cost		
			\$/KW \$ 124/KW At high-volume		
Fuel Cells	Hydrogen	Infrastructure		\$50/KW	Enchling
PGM- free catalysts	Production pathways	 Safety Manufacturing Delivery components Others 	2006	At low-volume Today	
• Durable • MEAs	Delivery components		Greater Fuel Cell D		U.S. Department of Energy
• Electrode • performance	Advanced materials for		4X more hou of fuel cell lifetime sind	urs (~) ce 2006	
PGM = Platinum group metals MEA = Membrane Electrode Assembly			80% Lower Electro for H ₂ production sin	yzer Cost ce 2002	

Hydrogen is one part of an 'all of the above' portfolio

Clean, sustainable, versatile, and efficient energy carrier

Upward trend with global fuel cell shipments

Electrolyzers: Over 100MW/year estimated global sales

*Courtesy of NOW, E4tech and partners: A collaborative effort to assess electrolyzer market potential

An exciting time for the transportation sector

Nearlysold or leased5,000in the United States

Commercial fuel cell electric cars are here

No petroleum, no pollution
Refuels in minutes
More than 360 mi driving range
Over 60 mpgge

FUEL CELL TECHNOLOGIES OFFICE

Long-Range, Heavy Duty Applications Emerging

Fuel cell delivery and parcel trucks starting deliveries in CA and NY

Fuel cell buses in CA surpass 19M passengers

Industry demonstrates first heavy duty fuel cell truck in CA

Stationary Power Applications Emerging

Fuel cells provided backup power during Hurricane Sandy in the U.S. Northeast

Fuel cell power for maritime ports demonstrated in Honolulu, Hawaii

Fuel cells used to power new World Trade Center in NYC

Over 240 MW of fuel cell stationary power installed across more than 40 US states

Multiple H₂ and Fuel Cell Applications in the U.S.

*Excludes recent announcement from CA to invest \$235M in electric vehicles

H₂@Scale concept

HZ

Vision H2@Scale: Enable affordable, reliable, clean and secure energy across sectors

H₂@scale: Enabling affordable, reliable, clean, and secure energy across sectors

More information at: www.energy.gov/eere/fuelcells/h2-scale

The Duck's belly is getting bigger

Two Concerns:

 Low Net Load: flexibility to reduce baseload generation resources is limited

High Ramp Rates in Evening: flexibility of other generation to ramp up is limited

Can be addressed by

Lab testing electrolyzers' value for ancillary services

First Ever Validation of Frequency Regulation with Electrolyzers

Integrated control & dispatch of renewable hydrogen

Goal: Demonstrate a 100% renewable hydrogen end-to-end supply chain

System integrates:

- 1. Autonomous controlled hydrogen export terminal
- 2. Frequency regulation and demand response through control and dispatch of electrolyzer and battery systems
- 3. Optimized dispatch of electricity to meet customer demand.

Impact: Reduced operating costs, increased renewable H₂ production from highly integrated projects

Hydrogen Energy Storage is Scalable

Image: Hydrogen Council

Hydrogen can be used to monetize surplus electricity from the grid, or remote, off-grid energy feedstock (e.g. solar, wind) for days to months.

H2@Scale: Nationwide Resource Assessment

Labs assess resource availability. Most regions have sufficient resources.

Red: Only regions where projected industrial & transportation demand exceeds supply.

Lab PIs: Mark Ruth, Bryan Pivovar, Richard Boardman, et al

H₂@Scale: Value to industrial processes?

Electrical power plant cooling

- Over 16,000 H₂ cooled generators worldwide
- Less delivery logistics, inventory management, 1-2 yr payback and improved efficiency
- Potential \$2B addressable market

Source: Proton

Iron Refining, Steel manufacturing

- More energy efficient when hydrogen used as reductant at high temperatures
- Potential annual savings of over \$100,000 for a 100,000 ton/year plant

Source: EERE Advanced Manufacturing Office, Berry Metal

redit: Berr

Global Hydrogen Infrastructure Activity Underway

IPHE: International Partnership for H₂ and Fuel Cells in the Economy

- Share information on H₂ and fuel cells, lessons learned, best practices
- Increase international collaboration to accelerate progress

May 2018

Launched 2003 and includes 18 countries and the European Commission

H₂@Ports and H₂@Rail Initiatives

- Collaboration with DOT-Maritime Administration (maritime) & DOT-Federal Railroad Administration (rail)
- Conduct R&D to assess the technical and economic potential of hydrogen use for:

Seaport Applications

Prime propulsion & auxiliary railway locomotives

Opportunities for outreach and to increase awareness

Celebrate National Hydrogen & Fuel Cell Day October 8 or 10/08

(Held on its very own atomic- weight-day)

Information and Training Resources to Increase Awareness

H2tools.org

INCREASE YOUR

Download for free at: energy.gov/eere/fuelcells/downloads/increa se-your-h2iq-training-resource

Learn more at: energy.gov/eere/fuelcells

Thank You

Dr. Shuk Han Chan

ORISE Fellow Fuel Cell Technologies Office <u>Shukhan.chan@ee.doe.gov</u>

www.hydrogen.energy.gov