

Microgrid Component Optimization for Resiliency Tool

December 6, 2018

Sarah Newman Amy Solana, Emily Barrett, Trevor Hardy

NELHA Conference on Energy Storage Trends and Opportunities: Policy and Regulatory Workshop

PNNL is operated by Battelle for the U.S. Department of Energy

PNNL-SA-139908

- Microgrid Planning Process
- Context
- Challenges
- Description
- Example Results
- Use Cases
- Future Directions

MICROGRID PLANNING PROCESS

Determine Project Needs

Critical loads

Resiliency requirements

Assess Current Assets Existing equipment to be included in microgridAvailable resources

- Explore different system configurations that meet res. goals
- Determine resilience capabilities of existing systems

- Army Directive 2017-07: Installation Energy and Water Security Policy
 - Tool development funded by the Army Reserve with additional support from OEI
 - Used to determine initial specs for 2 Army Reserve and 4 Army sites
- Project Goals
 - Quickly size microgrid components (PV, batteries, generators) to meet resiliency goals
 - Quantify economic benefits of operating the microgrid year-round
 - Allow for integration and modeling of existing resources
 - Filter potential systems according to varying priorities (economics, fuel consumption, PV area limits)
 - Determine resiliency risk under varying conditions

- Existing tools non-optimal for project goals
 - Based on "typical" conditions
 - Design focused on economics
 - Dispatch strategies based on "perfect" foresight
 - Predicting battery economic benefits requires detailed market models
- Our approach:
 - Simulation based on meeting resiliency goals
 - Robust design accounting for varying weather outside of average conditions
 - Realistic operational strategy
 - Uncertainty estimates for output metrics
 - Modular algorithm design
 - Leverages other PNNL tools

PV Production Under Varying Conditions

TOOL DESCRIPTION

- Tool specifications
 - Meets critical loads for a specified outage duration
 - Considers many different system configurations with different randomized outage scenarios
- Inputs:
 - Location
 - Resiliency goal
 - Annual hourly load profile
 - Utility rates
 - Existing equipment
 - PV orientation and parameters
 - Battery parameters
 - System constraints
 - Ranking criteria
 - Capital Costs

Optional

Required

OUTPUT METRICS

- Example site:
 - 14-day resiliency period
 - Existing 1MW PV array
- Generator sizing:
 - Typical Average of all scenarios
 - Conservative Worst-case scenario (largest generator, most fuel)

System	System Size			Generator Size (kW)			% of Load Met by Each Component		Fuel Consumption (Gallons)		
	PV (kW)	Battery (kWh)	Battery (kW)	Typical	Conservative	Capital cost (\$)	PV	Battery	Gen.	Typical	Conservative
Current PV Equipment	1000	0	0	1530	2250	\$1,187,895	15	0	85	20048	26180
Current Equip. with storage	1000	5506	1377	1527	2250	\$4,608,744	15	1	84	19787	25950
System with Least Fuel	7350	22026	5506	907	2250	\$28,840,539	41	38	21	5814	15786

Hour

7

Current PV system (1MW) with storage

• Add PV for better performance (7.3MW)

- Dispatch strategy:
 - 1. PV is dispatched to meet the load, with any excess used to charge the battery
 - 2. The battery is discharged such that it is at the minimum SOC at the end of the night
 - 3. The generator is sized to meet any unmet load
- Battery options:
 - Power/energy ratio
 - Initial, max, min SOC
 - Battery and inverter efficiencies

GENERATOR SIZING

- Sizing constraints:
 - All electrical load is met at each hour
 - Specified % buffer
 - Selected from list of diesel generators
 - Fuel consumption calculated based on a fuel efficiency function
- Includes smaller generator options with: 1
 - # scenarios not met
 - Average and max # hours not met
 - Average and max kWh not met
 - Average and max peak kW not met
 - Average and max fuel consumption
 - Capital cost reduction

Generator Power and Fuel Consumption Distributions

11

METRIC TRADE-OFF

SENSITIVITY TO INPUTS

- Load profile
 - Total annual load impacts PV and battery system sizes (largest cost component)
 - Peak load drives generator sizing and fuel consumption
- Resiliency goal and number of scenarios:
 - Generator sizing constrained by worst-case scenario
 - Allows for decreased risk

	Default load profile	'Peaky' load profile
Total Cost	\$28.84M	\$28.89M
Conservative Generator	2250kW	3280kW

	2-week period	1-day period
Average Generator	907kW	199kW
Conservative Generator	2250kW	2050kW

- Find systems that meet known requirements
- Cost/benefit analysis of different critical loads and generator sizes
- Cost/benefit of including different resources
- Assess resiliency capabilities of existing equipment
- Determine fuel requirements for potential outages
- Quantify risk/uncertainty for different system configurations

Source: PNNL

- Current status of tool: internal, command-line tool, requires Python/scripting knowledge
- Future vision: Graphical User Interface allowing any user to run the tool independently
- Additional capabilities:
 - Redundant dispatch of multiple generators
 - Demand charge savings
 - Improved sizing algorithm
 - More advanced battery discharge algorithm
 - Payback calculation based on year-round battery operation
 - More complex pricing options
- Integration with other PNNL tools to optimize operational strategy
- Include new generation sources?

- U.S. Army Reserve Installation Management Directorate
- U.S. Army Office of Energy Initiatives

Thank you

SIZING COMPONENTS

- PV sizes:
 - Max capacity = (L + eff)/PV
 - Net zero = L/PV
 - 0.5 × *Net zero*
 - 0.25 × *Net zero*
 - 0
- Battery sizes:

(*Battery power = capacity × PER* for all sizes)

- Max capacity = MNL/RTE
- 0.75 × Max capacity
- 0.5 × Max capacity
- 0.25 × Max capacity
- 0

L: Total annual load PV: Total annual PV generated by 1kW system RTE: Roundtrip efficiency MNL: Maximum nightly load PER: power to energy ratio eff: Efficiency losses from charging battery eff = excess PV from NZ * (1 - RTE)

ALTERNATIVE SOLAR PROFILES

- Generates a suite of solar and temperature profiles based on historical NREL data
- Randomized profiles allow for a large range of solar conditions to be simulated
- Allows users to be confident that results encompass any "worstcase scenario" weather situations

- Based on the publicly available pvlib code library, developed at Sandia National Laboratories as part of the PV Performance Modeling Collaborative
- Panel and inverter performance details are based on published test data from the California Energy Commission
- System options:
 - Tilt
 - Azimuth
 - Panel, inverter models
 - String configuration
 - Racking type
 - Albedo
 - Losses

