Molokai: Battery Energy Storage for Grid Stability

Rick Rocheleau Director

Hawaii Natural Energy Institute

School of Ocean & Earth Science & Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, Hawaii 96822

NELHA Energy Storage Conference

December 5, 2018

Kona, Hawaii

Hawaii Natural Energy Institute (HNEI)

Organized Research Unit in School of Ocean and Earth Science and Technology University of Hawaii at Manoa

Founded in 1974, established in statute in 2007 (HRS304A-1891)

- Directed by statute to coordinate and undertake the development of Hawaii's abundant natural energy resources in order to ...diminish Hawaii's dependence on fossil fuels
- Building international collaboration to facilitate transfer of Hawaii's lessons learned to other Asia-Pacific regions. Currently active in Japan, Thailand, Vietnam, and Korea

Grid Scale BESS Projects (HNEI)

Conduct experiments to assess/optimize BESS performance and lifetime for high value grid applications

Haw'i 10 MW Wind farm at Upolu Point Hawaii Island (1MW)

Frequency regulation and wind smoothing (6 years, > 8400 cycles)

Campbell Park industrial feeder with high penetration (1MW)

• Power smoothing, voltage and VAr support

Molokai Secure Renewable Microgrid (2MW)

• Operating reserves, fault management, and frequency regulation

photos courtesy of Altairnano

Power smoothing at Hawi wind farm

- Stein, K.; Tun, M.; Musser, K.; Rocheleau, R. Evaluation of a 1 MW,
 250 kW-hr Battery Energy Storage System for Grid Services for the Island of Hawaii. *Energies* 2018, *11*, 3367.
- Stein, K.; Tun, M.; Matsuura, M.; Rocheleau, R. Characterization of a Fast Battery Energy Storage System for Primary Frequency Response. *Energies* 2018, *11*, 3358.

Moloka'i Island 100% RE Grid Initiative

- Existing 4.5MW Molokai electric grid is powered by diesel generators with over 2MW of distributed PV.
- Relatively small disturbances can trip PV units causing automatic load shedding and customer outages
- Initial Project Goals: Integrate a fast-acting BESS to improve grid reliability. Develop interconnection and controls for a 2MW/375KWh fast-acting BESS.
- Current Project Goals: Develop sufficient understanding of Molokai grid operation to optimize value of BESS with other grid systems including dynamic load bank and proposed PV-battery system from New Energy Partners.

Project Timeline

- 2011: ONR funding for 3 BESS projects in the Hawaiian archipelago.
- 2011: Memorandum of Agreement with MECO for BESS on Molokai
- 2014: Community meetings on Molokai to gain community acceptance
- 2015: 2 MW Li-ion titanate BESS was installed on Molokai (August)
- 2015: Testing confirmed that BESS response (as installed) was too slow and destabilized grid.
- 2016: Testing confirmed modified controls mitigated grid contingencies for loss of load and loss of generation)
- 2016 2018: Testing of BESS with incremental increase in "authority". Increased maximum response from 100kW to 500kW.
- 2018: MECO operates BESS with an authority of 750 kW. Results being analyzed
- Ongoing: High fidelity grid modeling in PSCAD to optimize coordination of all grid resources on Molokai.

Molokai BESS Commissioning

Molokai BESS Interconnection

Molokai BESS with 100kW Authority and Original Algorithm

Expansions (bottom) show response at up-step

Molokai BESS with 100kW Authority and Fast Response

Expansion (bottom) shows response at up-step

Impact of BESS with 500kW Authority and Fast Response Expansions (bottom) show Down-Step

500kW fast response significantly reduced frequency fluctuation

UNIVERSITY of HAWAI'I

Molokai: Frequency Extremes

Black: BESS Offline Red: BESS Online

Legacy PV trips at 59.3Hz and 60.5Hz

BESS-Generator Interaction

- Fast generator ramp (bottom blue) in response to grid event causes over-frequency event (blue top)
- BESS responds to over-frequency by absorbing excess real power (green).
- BESS uses full authority of 750kW which was helpful but likely less than optimal
- BESS and generators taper off gradually as system returns to stead-state.
- PSCAD models under development to more fully understand generator-BESS dynamic.

Summary

- Modeling and initial testing showed that as procured response of 200-250ms would destabilize the Molokai grid especially when operated with lower inertia generator schemes
- Control algorithm and hardware was modified to reduce BESS response time to less than 60ms (typ.)
- Live testing on Molokai grid with incremental increases in BESS authority has shown increasing value to the grid
- After extensive observation and collaboration with the utility, the BESS now has authority to respond with 750kW
- Installation of additional high-speed measurements and PSCAD modeling underway to further optimize the interaction of the BESS with existing generation
- Model will be of value for future integration of utility scale PV-BESS (load shifting) by New Energy Partners

Reduction of BESS Response Time

Re-engineer data acquisition and processing architecture

Legacy Architecture: 211 to 251ms, depending on polling delay

Modified Architecture: <58 to 101ms max. depending on inner computer thread availability

"V" represents 3-phase voltage; "f" represents grid frequency;

"P" represents real power command; "I" represents current