2016 NELHA Energy Storage Conference Hydrogen Energy Systems as a Grid Management Tool

Mitch Ewan

Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii

September 13, 2016

HNEI Fuel Cell/Hydrogen Research

- HI Sustainable Energy Research Facility (HISERF) (ONR, USDOE, HECO, NASA, Industry)
 - Testing of fuel cell and battery systems for manned and unmanned vehicles
 - Development of advanced air filtration for FC operations in harsh environments.
- Marine Corps Base Hawaii Dual Pressure "Fast-Fill" H2 Fueling Station (USDOE, ONR)
 - Basis for design of public stations
 - Unattended operation, 400 fills since Nov 2014

- Hydrogen Energy Systems for Grid Management (USDOE, ONR, SOHI, Industry)
 - Demonstrate the use of electrolyzers to mitigate the impacts of intermittent renewable energy
 - Evaluate effect of multiple revenue streams on overall hydrogen costs.
- Grid Analysis Integration of renewables into HI grid systems

Renewable Fuels Pathways (simplified)

HI Ground Transportation ~ 500 million gpy

Grid Frequency Management

- ✓ Electric power grids operate at a frequency of 60 Hz;
- Deviation from 60 Hz is a measure of the load balance of the grid – load matched to generation;
- With increased penetration of intermittent renewables on the grid not only the load but the supply is subject to fluctuations.
- Grid operators attempt to stabilize the frequency by ramping power generation up/down;
- Battery can be a useful source/sink of power reducing the need for the utility to operate power generation at lower efficiencies and incurring higher costs;
- Project Thesis: An electrolyzer can be used as a variable controllable load that can be reduced/increased when other loads increase/decrease in order to maintain the total balance and the frequency stable;

Hydrogen Energy Systems for Grid Management

Demonstrate use of electrolyzers to mitigate the impacts of intermittent renewable energy & evaluate potential to offset hydrogen costs by value-added revenue streams.

- Use grid models/grid scale battery experiments to determine duty cycle required to provide ancillary service to the grid
- Characterize performance/durability of commercially available electrolyzers under dynamic conditions to provide ancillary services to grid, e.g. frequency regulation
- Use off-take hydrogen to fuel shuttle buses operated by County of Hawaii Mass Transit Agency, and Hawaii Volcanoes National Park (HAVO);
- Conduct performance/cost analysis to identify benefits of integrated system including grid ancillary services & offgrid revenue streams

Approach

HNEI's concept to use an electrolyzer for fast demand response to provide grid ancillary services such as up-regulation, down-regulation, and off-peak load.

High Fidelity Island Grid Models

- ✓ HNEI & GE developed high fidelity island grid models. Invested ~ \$5 million over 5 years.
- ✓ Address:
 - > Operating strategies;
 - Renewable curtailment;
 - > Stability with high penetration of renewables.
- Future work to determine potential value to grid operations:
 - Load shifting;
 - Dynamic demand response;
 - Storage;
 - eVs, and
 - > Hydrogen.

Use BESS Operation as Model for Using Electrolyzer for Grid Frequency Regulation

Time Minutes of Day

Grid Frequency (Hz): Measured with battery off (black) and on (red) at twenty(20) minute intervals

Battery Output (MW): Can alternate between charge and discharge up to 10 times per second

10MW Electrolyzer: variability in power consumption to provide same frequency support as 1 MW battery

- Frequency variability on 150MW grid system reduced with a 1MW, 250kwh fast BESS (*BESS separate project using Lithium-Titanate battery on HELCO Grid);
- Model suggests same power range as 1MW BESS can achieved with good CAPEX utilization using 10 MW-scale electrolyzer;
- Early operation suggests electrolyzer more appropriate for slower-acting changes;
- Project will investigate electrolyzer/BESS hybrid to find optimum mix of battery and electrolyzer to provide required level of grid regulation services.

Initial Test Plan

BESS Measured Load Profile

- Initial testing at cycle rates (ramp rates) below BESS ramp rates;
- Evaluate electrolyzer and controls to determine maximum allowable ramp rates;
- Repeated cyclic operation at "high" rates planned for durability testing;
- Dynamic model will be developed and used to evaluate electrolyzer/BESS hybrid performance.

NELHA "Hydrogen Hub"

- > State of Hawaii facility:
 - Strong political & financial support;
 - Significant cost share provider;
 - Available staff.
- Ease of permitting;
- Existing infrastructure reduces site improvement costs;
- Proximity to Kona Airport offers opportunity to leverage project:
 - Airport ground handling equipment;
 - Airport shuttle buses;
 - Rental cars.

Support NELHA Vision of a "Hydrogen Hub";

This project provides "enabling" infrastructure to attract new
projects;

Central Site Production/Distributed Dispensing

Economically viable electrolytic hydrogen will require low cost electricity + high capital utilization.

- Central site production for highest capital utilization;
- ✓ Distributed dispensing sites with minimum complexity to reduce fuel distribution costs;
- Optimize additional revenue streams from:
 - Monetizing ancillary services;
 - Sale of hydrogen for transportation

NELHA Hydrogen Plant

- 65 kg/day PEM electrolyzer/compressor production system in 40 foot ISO container
- > 3 hydrogen transport trailers
- > 350 bar dispenser to support MTA 29-passenger shuttle bus
- Powered from HELCO grid ~ 50% renewable energy
- > Automated system for unattended operation
- Remote monitoring

Completed Equipment Commissioning & Testing

Equipment under test at Powertech

- Installed and commissioned HNEI PLC system for improved control of cycling;
- Completed the following:
 - Individual component functionality evaluation;
 - Electrolyzer diagnostic baseline tests. Tests at regular intervals over the 2-year duration of the project will be used to determine electrolyzer degradation over the long-term;
 - Conducted sweep load profile to determine operating envelope & system limits;
 - Tested reliability of HNEI PLC to control and operate the electrolyzer safely.

Big Island Buses & Hydrogen Transport Trailers

County of Hawaii Bus (1)

HAVO Buses (2)

Hydrogen Transport Trailers (3)

- Fuel Cell Electric Hybrid Shuttle buses demonstrate to the general public the advantages of fuel cell buses and electric drive.
 - > Quiet ride
 - No diesel fumes.
 - Potential for lower O&M costs (need low cost hydrogen);
- Hydrogen Transport Trailer carries 105 kg @ 450 bar. They will demonstrate distributed dispensing using cascade fill to 350 bar using a "Smart" dispenser.

HAVO 350 Bar Dispensing Station

- Aloha Petroleum delivery services
- Drag & Drop "Computer Controlled" Tube Trailers.
- 350 bar Cascade Fill
- Boost compressor captures 95% of H2
- Unattended Operation
- Remote Monitoring
- Automatic shut down

Hydrogen Energy System Analysis

HES = Electrolyzer System + Compressor + Auxiliaries

Measured power consumption and parasitic loads to determine overall system efficiency

- ✓ Data collected by electrolyzer and HNEI PLC ;
- Produced 65 kg of hydrogen, compressed to 450 bar and stored in hydrogen transport trailer;
- ✓ Total power consumption: 79 kWh/kg
- ✓ Overall efficiency: 50%
- ✓ 90% of total energy consumed by electrolyzer system;
- ✓ 10% consumed by compressor and auxiliary loads.

Load Profile Test Using HNEI PLC

Results of a initial load profile test using the HNEI PLC

- Operation of the HES for hydrogen production for fueling fuel cell-battery hybrid shuttle buses was very acceptable;
- Use of the HES for the grid management was not suitable with the factory installed electrolyzer control system.

Modified Electrolyzer Control System

Original Electrolyzer Control System

HNEI Modified Electrolyzer Control System

- Electrolyzers can respond quickly to changes in load;
- Commercial hydrogen production systems not optimized for dynamic operating profiles, particularly in the areas of power conversion & controls;
 - HNEI modified control system made response of the system ~10 times faster but still not fast enough to match BESS performance.
- Electrolyzer/BESS hybrid may be the solution.
- ✓ Initiated dialogue with Proton Onsite to collaborate on further control system modifications.

Collaborations

- ✓ US Department of Energy: Project Sponsor & Funding;
- ✓ **Vaval Research Laboratory: Federal Technical Program Manager;**
- ✓ Hawaii Natural Energy Institute: Implementing Partner, Technical Lead;
- ✓ Office of Naval Research: Supplemental Funding;
- ✓ State of Hawaii: Public Outreach, Cost Share;
- ✓ Natural Energy Laboratory Hawaii Authority: Host Site; Site Work
- ✓ County of Hawaii MTA: Host Site, Bus Operator (Cost Share);
- ✓ Hawaii Volcanoes National Park: Host Site, Bus Operator;
- ✓ HCATT: Conversion of Shuttle Bus, Cost share;
- ✓ US Hybrid: Conversion of Shuttle Bus, Cost share;
- ✓ HELCO: Interested Observer, Potential Partner for Grid Analysis;
- ✓ Hydrogen Safety Panel: Design Hydrogen Safety Review;
- ✓ PNNL: First Responder Training;
- ✓ Boyd Hydrogen: Site Hydrogen Safety Review.
- ✓ Proton Onsite: Electrolyzer Control System
- ✓ Aloha Petroleum: Hydrogen Delivery

