

Economic Optimization of Microgrids and Energy Storage

Travis Simpkins, PhD, Senior Research Engineer

NELHA Energy Storage Conference September 12, 2016

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

NREL's REopt Microgrid Design Platform

REopt Portfolio
REopt Campus

REapt Control

REopt • REapt Maragna

0

Plan: PV – BESS Sizing in Southern California

- Determine economically optimal PV + Battery system size
- Demand Reduction / Arbitrage
- Data
 - 15-minute electrical load
 - Southern California Edison (SCE) utility tariff (TOU-8)
- Result: Optimal PV + Battery size and resulting economic performance
- Battery is only economical when paired with PV at this site

Energy Charge						
Summer	on peak	12 pm - 6 pm	\$0.09/kWh			
Summer	mid peak	8 am - 12 pm; 6 pm - 11 pm	\$0.06/kWh			
Summer	off peak	11 pm - 8 am; weekends	\$0.04/kWh			
Winter	mid peak	8 am - 9 pm	\$0.06/kWh			
Winter	off peak	9 pm - 8 am; weekends	\$0.04/kWh			
Demand (emand Charge					
Summer	on peak	12 pm - 6 pm	\$14.60/kW			
Summer	mid peak	8 am - 12 pm; 6 pm - 11 pm	\$3.90/kW			
Winter	all	any time	\$0/kW			
Facility De	emand Chai	rge ²	\$7.64/kW			
Summer: June-September; Winter: October-May						

Eost Portfolio

REapt Morogn

٥

.

REopt

Design: PV-BESS-Diesel Microgrid for NELHA

- Determine economically optimal sizes for hybrid microgrid
- Applications
 - Resiliency
 - Demand Charge Reduction
 - Energy Arbitrage

Energy Charge	\$0.36 / kWh	
Demand Charge	\$10.25 / kW	

Customer Damage Function

REop

REapt Contra

- Model chooses to incur losses or design system capable of sustaining outage
- Ran 480 outages of random start and random duration scenarios for two meters.
- Adding PV and battery to generators resulted in about \$2.5 million of additional value over 25 years.

NELHA Results— 55 Pump Station

	Base Cases	Renewable Energy Cases	Value of RE
Ourages	No outages, utility only Life-cycle cost: \$12,501,082	RE installed without generator PV: 646 kW, Battery: 134kWh/70 kW Life-cycle cost: \$11,101,400	Net Present Value \$1,399,682
	Utility, with generator to sustain outages Generator: 391 kW Life-cycle cost: \$12,730,100	RE installed with generator PV: 646 kW, Battery: 134 kWh/70 kW, Generator: 391 kW Life-cycle cost: \$11,330,300	Net Present Value \$1,399,800

- PV-BESS is economically viable in grid-connected operation
- Diesel only case, and Diesel-PV-BESS case can both meet 100% of simulated outages
- Diesel-PV-BESS case can presumably sustain longer outages than diesel-only case given a limited supply of diesel fuel onsite
- Installing renewable energy with generators adds resiliency and value to the system

2

Outages

6/3/14

6/2/14

Analyze: Alcatraz Island

- PV-Battery-Diesel island microgrid installed 2012
 - Two 220 kW-DC diesel generators 0
 - 305 kW-DC solar PV \cap

300

250

200

150

100

50

0

6/1/14

Power (kW)

- 1920 kWh lead acid batteries 0
- Optimized control strategy using REopt platform

PV

curtailed

6/4/14

6/5/14

6/6/14

- "Cycle charging" results in curtailed PV, increased battery wear 0
- Recommend "Load following" 0

Diesel

power

Load

- Revised control strategy saves 15,000 gallons of fuel annually
 - Cost savings of \$115,000 / year (diesel fuel and battery wear) 0

PV available

PV Consumed

6/7/14

6/8/14

Operate: Utility Scale BESS in California

- Battery to be installed on feeder in California with high PV penetration
 - T&D Deferral
 - PV smoothing
 - LMP arbitrage
 - Frequency Regulation
- T&D deferral and PV smoothing given priority in optimization model
 - Determined optimal market participation strategy for arbitrage and AS
- Determined optimal participation in markets leads to \$30-\$80 / day net of degradation

Operation of the BESS for April 21st and 22nd (above). Relevant pricing data (below).

LMP and AS market pricing for a single day (above). Economically optimal BESS dispatch with and without battery degradation (below).

Eopt Portfolio

REapt Control

٥

REO

Travis Simpkins <u>travis.simpkins@nrel.gov</u> 617-501-3287

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.