Energy Storage R&D Overview

Babu R. Chalamala

NELHA Energy Storage Workshop, Sept 12, 2016

Sponsored by DOE Office of Electricity
Dr. Imre Gyuk, Energy Storage Program Manager
Sandia - Energy Storage R&D

- Energy Storage covering technologies with applications in the grid, transportation, and stationary storage.
 - Basic research through systems engineering
 - Extensive capabilities in cell prototyping, pilot scale manufacturing, safety R&D and reliability
- OE Energy Storage program leverages wide ranging capabilities across the lab in a number of areas including materials sciences, power sources, microsystems, modeling and analytics.
 - In Energy Storage Safety, synergies with capabilities in Electrochemical Power Sources R&D and leverages infrastructure in BATLab
 - In Power Electronics, synergies with Ultra Wide Bandgap Power Electronics and Power On Demand research programs. Levering Fab Capabilities in the MESA Fab
Grid Energy Storage - Program Goal
Make Energy Storage Cost Competitive

- Critical challenges for energy storage are high system cost and cycle life
 - Existing storage solutions are too expensive
 - Deep discharge and longer cycle life
 - Safe and reliable chemistry
 - Scalable technology to cover all markets

- To make storage cost competitive, we need advances across all major areas:
 - Batteries, power electronics, PCS
 - BOS and Integration
 - Engineered safety of large systems
 - Codes and Standards
 - Optimal use of storage resources across the entire electricity infrastructure
Grid Energy Storage Program - Thrust Areas

- Materials and Systems Development (Babu Chalamala)
 - Development of next-generation technologies
 - Improving current technology (flow batteries, flywheels, membranes, etc.)

- Power Electronics (Stan Atcitty)
 - Development of power electronics and power conversion systems.

- Energy Storage Systems Safety and Reliability (Summer Ferreira)
 - Fundamental Safety R&D of utility class storage systems
 - Laboratory testing and analysis from individual cells to 1MW systems

- ES Systems Demonstrations and Testing (Dan Borneo)
 - Field deployments; State-Initiated Demonstration Project Development

- Grid Analytics and Policy (Ray Byrne)
 - Providing assessments of the impact of storage placement

- Outreach - publications and meetings to help educate the Grid Energy community (Jaci Hernandez)
 - EESAT and DOE Energy Storage peer review
 - US DOE Global Energy Storage Database
Energy Storage Materials R&D

- Lower Temperature Sodium Based Batteries
- High Energy Materials for Flow Batteries
- Low Cost Membranes for Flow Batteries
- Rechargeable Zn-MnO₂ Batteries
- High Voltage Capacitors
- Soft Magnetics
- Lightweight Composites for Flywheels
- Wide Bandgap Materials and Devices for Power Electronics
Low cost Power Electronics and PCS are key to the large-scale deployment of energy storage and for a future grid with efficient two-way flow.

- PCS can be 20-40% of overall energy storage system cost.
- Need for significantly reduced installed cost/kVA and footprint, improved control capability, and increased reliability.
Power Electronics R&D

Materials R&D
- Gate Oxide R&D
- Advanced Magnetics

Devices
- ETO
- SiC Thyristors
- Monolithically integrated SiC transistors
- WBG Characterization & Reliability
- High energy dielectric capacitors

Power Modules
- SiC High Temp/density Power Module
- HV SiC JFET Module
- HV, HT Reworkable SiC half-bridge modules

Power Conversion System
- Dstatcom plus energy storage for wind energy
- Optically isolated MW Inverter
- High density inverter with integrated thermal management
- High temp power inverter

Applications
- FACTS and Energy Storage
- Power smoothing and control for renewables
- Dual active bridge for advanced energy storage system designs
World's First Fiber Optic Electrical Transducer to Pass Military Vibration and Shock Certification
Exceeds 30Mhz
Capable of operating up to 34.5kV without additional insulation, isolation, or cooling

World's First High Temperature SiC Single-Phase Inverter
3 kW (1200 V/150 A peak)
250 °C Junction Temperature
Integrated HTSOI Gate Driver

World's First High Temperature SiC Power Module
50 kW (1200 V/150 A peak)
250 °C Junction Temperature
Integrated HTSOI Gate Driver

World's First Commercially Available Ultra-High-Voltage SiC Thyristor
Rating exceed 6.5kV, 200kHz, 80A
> 200°C junction temperature

World's First Highly Accelerated Lifetime Testing (HALT) of High Voltage SiC Modules
Dramatically Accelerates Design Cycle
-100 °C to 250 °C (1.7 °C/s Ramp)
48 in x 48 in Table Size
6 axis 75 gRMS Vibration

World's First Monolithically Integrated Single Chip Transistor
Integrated SJT/Diode Chip at 1200V

World’s First High Voltage, High Temperature, Reworkable SiC Half-Bridge Power Module
> 15 kV / 100 A, > 200 °C
Reworkable
Wire Bond Free, Low Parasitic Design
Device Neutral
HV Isolated Gate Driver

World’s Highest Voltage Normally Off SiC JFET
6.5 kV, 20kHz, 60A
200°C Junction Temperature

World's First High Frequency, High Temperature, SiC Half-Bridge Power Module
15 kV/100 A, 20 kHz, 200°C
Reworkable
Low Parasitic Design
Device Neutral
HV Isolated Gate Driver

DOE OE Power Electronics Development
Soft Magnetics

- Current state of the art: soft ferrites (low power density), nanocrystalline and amorphous materials (very costly, power density can still be improved)
- Current TRL: 3 (\(\gamma'\)-Fe4N prototype inductor/transformer cores fabricated)
- Success enables: high frequency (HF) operation, enhanced power density, and sustained performance at elevated temperatures
- Collaborators: University of California, Irvine
- IP: U.S. Patent applications: 15/002,220, 14/531,075

\(\gamma'\)-Fe4N prototype toroidal inductor cores fabricated using spark plasma sintering (SPS) & magnetic response
High Voltage Capacitors

- Current state of the art: High temperature OR high energy density capacitors are available for <1000hr lifetimes at high cost.
- Current TRL: 2-3, Relevant compositions were fabricated into multilayer devices that have measurable high temperature stability under relevant DC bias with maintained high permittivity.
- Success enables: Move from high capacity electrolytic DC bus (slow frequency, low T) to base metal integrated high temperature capacitors.
- Collaborators: TPL Inc. (TCF project and Oregon State University)
DOE OE Strategic Plan on ESS Safety

- Lack of standardized validation protocol
- Lack of plan around incident preparedness
- Incomplete and dispersed codes, standards and regulations (CSR)

Grid Energy Storage Safety

- 2014 FEB
- 2015 JAN
- 2015 MAR
- 2015 APR
- 2015 MAY

Overview of Development and Deployment of Codes, Standards, and Regulations Affecting ESS Safety Published

Inventory of Safety Related Codes and Standards Published

DOE OE Workshop for Grid Energy Storage Safety
- Attended by 70 thought leaders from stakeholder groups across the energy storage industry

Energy Storage Safety Core Team (ESSCT) Webinar Series
- Identified and prioritized safety gaps related to energy storage:
 - Safety validation and risk assessment R&D,
 - Codes and standards, and
 - Safety outreach and incident response

Grid Energy Storage Safety Strategic Plan Published
- Based upon outcomes of the DOE OE Workshop for Grid Energy Storage Safety
- Outlines a path forward for ESS safety initiatives
Focus on developing a fundamental understanding of safety and reliability through R&D in four areas:

- Materials origin of safety and reliability
- Device level failures
- Cascading failures
- Software’s role as a critical safety system

Laboratory infrastructure at Energy Storage Test Pad (ESTP) for MW class storage systems evaluation

Advanced simulation and modeling of energy storage systems
Unique Capabilities

Cell and Module Testing
Battery Abuse Testing Laboratory (BATLab)

Battery Pack/System Testing
Thermal Test Complex (TTC) and Burnsite

Battery Calorimetry
Capabilities include grid tied test and evaluation of energy storage technologies for cell to MW systems.

Cells and Modules

- **72V 1000A Bitrode (2 Channels)**
- Cell, Battery and Module Analysis
 - 14 channels from 36 V, 25 A to 72 V, 1000 A for battery to module performance analysis
 - Over 125 channels; 0 V to 10 V, 3 A to 100+ A for cell performance analysis
 - Potentiostat/galvanostats for spectral impedance
 - Multimeters, shunts and power supply for high precision testing
 - Temperature chambers

Fully Integrated Systems

- **Energy Storage Test Pad (ESTP)**
 - Scalable from 5 KW to 1 MW, 480 VAC, 3 phase
 - 1 MW/1 MVAR load bank for either parallel microgrid, or series UPS operations
 - Subcycle metering in feeder breakers for system identification and transient analysis
 - Thermal imaging
 - **System Safety Analysis (new)**

Remote Data Acquisition System (RDAS)

- Portable, Modular, Remotely Reconfigurable, and outdoor-ready
- Subcycle metering
- Tractable calibration
- Command Signal Ready for Grid Operator Simulation
- No control over grid conditions

Field Analysis (new)

- **Lab Analysis**
- **Field Analysis**

Energy Storage System Analysis Laboratory
Grid Analytics and Controls

- Developing program in analytics and control aspects of grid storage systems

- Current projects
 - Wide area damping control and mall signal stability of the grid (BPA)
 - Control algorithms and optimization

- New projects in FY17
 - Control strategies and architectures for distributed control of energy storage for different control goals. Impact of communications latency and bandwidth.
 - Software Architectures for control of distributed energy storage and improve the interoperability of energy storage with utility management software
DOE Global Energy Storage Database

- The DOE Global Energy Storage Database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies.

- All information is vetted through a third-party verification process. All data can be exported to Excel or PDF. Our hope is that this site will contribute to the rapid development and deployment of energy storage technologies.

Metrics Effective June 2016
- 1.2 Million Hits/ Site Visits
- 1563 Total Operational Projects
- 22 Project Created
- 261 Projects Updated
- 12 Projects Verified
Acknowledgements

- DOE Office of Electricity – Dr. Imre Gyuk, Energy Storage Program Manager
- Grid Energy Storage Team at Sandia
- Pacific Northwest National Laboratory
- Collaborators across the country (universities, utilities, state and regional entities, and a number of companies)
2016 DOE OE Energy Storage Program Peer Review

Background
The annual peer review serves as a platform to describe and assess before science and engineering colleagues how the funded work from DOE OE met basic and applied research criteria, the appropriateness of methodologies and use of competent personnel with adequate resources.

Current Agenda
- Program Overview: DOE & National Labs
- 36 Formal Technical Talks: Existing Work
- 30 Poster Presentations: New Work, Early Results
- 3 Panelists: ES & Grid Integration

SAVE THE DATE:
September 25-28, 2016
Renaissance Hotel/DuPont Circle
Washington, DC

Images from 2014 DOE OE ES Peer Review
Purpose

Meeting the Challenge: 2017 ESS Safety Forum will provide a platform for discussing the current state of ESS and mitigation strategies for improving call to system level safety and reliability. This open forum will provide presenters an opportunity to present their work in ESS, and it will provide attendees the chance to see the work that is creating the future of ESS.

Hotel

Meeting the Challenge: 2017 ESS Safety Forum will be held at the historic La Fonda Hotel in Santa Fe, New Mexico from February 22-24, 2017.
Development of advanced diagnostics for **battery health and stability**

Predict life, performance, and safety issues

Inform system operators, workers, and responders